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Enabling Continuous, Field-Based Isotope and Greenhouse Gas Measurements with 
WS-CRDS-based Analyzers 
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How can a measurement of time be used to quantify concentrations or isotope ratios? 

WS-CRDS analyzer schematic

Conclusion:
This WS-CRDS technology has been pivotal in developing gas 
an isotope analyzers capable of being deployed in the field, 
unattended, for long periods of time, enabling measurements to 
be done more simply, at lower cost, by a greater number of 
scientists, moving information-rich, laboratory-quality 
measurements out of the lab. The combination of this 

technology and its validation has resulted in highly robust, easy 
to use instruments that provide highly sensitive and stable data 
even in challenging environmental conditions. No other gas or 
isotope analyzer has, to date, been demonstrated to achieve 
superior precision, accuracy and long-term stability in field 
conditions without calibration. 

To measure the baseline under the CO peak, you can’t move off 
resonance, because there is no spot in the spectrum that 
corresponds to the spectral baseline with ONLY the CO removed 
(the H2O and CO2 are still present). And you can’t remove just 
the CO gas. What do you do?...

Use real-time nonlinear spectral analysis to quantify different 
constituents in the sample. Using the shape of each line, 
extrapolate the baseline under the analyte peak. This process 
requires a highly accurate wavelength monitor

What are the minimum requirements for 
high-stability spectroscopic 
measurements?

Accurate gas and isotope measurements require stable 
spectroscopic features.

In a given gas matrix, only two parameters affect the lineshapes 
of these features:  

  •  Temperature

  •  Pressure

Tiny temperature and pressure instabilities cause BIG 
concentration errors!

Once the spectroscopic feature is stable, measuring it 
accurately requires determination of its horizontal axis 
(wavelength) and vertical axis (absorption) with high-precision.

  –   Vertical axis precision given by wavelength monitor

  –   Horizontal axis precision given by long pathlength and 
     inherent sensitivity of ring down measurement itself

A key feature of the WS-CRDS analyzer is the wavelength 
monitor which allows the wavelength of the laser to be precisely 
controlled and positioned accurately along the absorption 
profile of the molecule. This enables fast data acquisition as 
the entire peak profile does not need to be measured. Further, 
this wavelength certainty ensures that the system is 
interrogating the molecule of interest and not a nearby 
absorption peak of an interfering species. 

All instruments undergo field 
ruggedness testing:

•  MIL-STD810F bench-handling on three axes, 20 drops from 
4” height onto a hard surface

•  0.5g vibration, 15 minutes, 2 axes

•  Operational temperature cycling, 5°– 45°C

•  Non-operational hot/cold extreme temperature soaks and 
start-up testing

•  >1 week operational burn-in testing

•  100% performance testing for all key specifications

High-precision, high-stability data

The precision and long-term stability of these greenhouse gas and isotope 
measurements is afforded by the temperature, pressure and wavelength control 
systems of the WS-CRDS analyzers.

High-accuracy wavelength control – 
critical to accurate measurements

In an ideal world, there are no nearby interfering lines, so you 
could just measure the peak and the baseline to find 
concentration. But in the real world, interfering lines are 
everywhere

Measuring the peak is easy, but…

How do you measure the baseline under the peak?

In an ideal world:

In the real world:

In the real world, you 
only get to measure 
the blue circles, not 
the red line

Temperature & Pressure control

In the WS-CRDS analyzer, the temperature and pressure of the 
gas are also tightly controlled enabling virtually drift and 
calibration-free measurements over long periods of time.

•  Temperature control to better than 1 part in 15,000

•  Pressure control to better than 1 part in 1000

Wavelength-Scanned Cavity Ring Down Spectroscopy (WS-CRDS) – How it Works
•  Light from a tunable semiconductor diode laser is directed into 

an optical resonator cavity containing the continuously-flowing 
analyte gas.

•  When the optical frequency matches the resonance frequency 
of the cavity, energy builds up in the cavity.

•  When the build-up is complete, the laser is shut off.

•  Light circulates in the cavity ~100,000 times, traveling >20km 
The high precision of WS-CRDS comes from this long 
interaction pathlength providing parts-per-trillion detection 
levels for some gases. 

•  The energy decays from the cavity (through a partially-reflective 
mirror) exponentially in time, or “rings down,” with a 
characteristic decay time. This energy decay is measured, as a 
function of time, on a photodiode.

•  The ring down time measurement is continuously repeated 
(>100 times per second) at several different well-controlled 
points in wavelength as the laser is tuned across the molecular 
signature of the analyte gas.

•  WS-CRDS is a measurement of time not of absorbance. When 
the laser is at a wavelength where the gas in the cavity is 
strongly absorbing, the ring down time is short; when the 
wavelength is such that the gas does not absorb, the ring down 
time is long. WS-CRDS has complete immunity to laser noise 
since the laser is actually off during the measurement.

•  The gas concentration or isotope ratio is determined by a 
multi-parameter fit to this lineshape (red curve) and is 
proportional to the area under the curve. The vertical axis is loss 
(or absorption, measured with cavity ring down); the horizontal 
axis is wavelength (measured with Picarro Wavelength meter)

Choosing a spectral line
Hundreds of lines for any given species are available for analysis (only need one line per species to measure its concentration). 
How do we choose which line to use? 
Zooming in: choose the strongest possible molecular feature that is as free from interference as possible (example of CO2in ambient air).

Use multiple lasers and wide-bandwidth optics to allow multi-species operation in a single analyzer.
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Calculate loss

δ=1/cτringdown

Icirc(t) = Icirc(t0)exp[-t]τ

Where:
I: Light intensity in the cavity
c: Speed of light
d: Loss per unit length
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The Picarro wavelength monitor: 
Spectroscopic GPS

• Proprietary optical sensing technology

• Broadband, fiber-coupled device

• Stabilized to environmental fluctuations

• Precision of 8 femtometers in the near infrared

• 8 femtometers compared to the laser wavelength is like 
comparing the size of a penny to the width of the US!
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Even small wavelength 
errors here ...

Cause big baseline
errors here

Standard Deviation 0.003%

30 day test – single bottle – no calibration adjustment

Standard Deviation 0.024%

Line may still have 
interferences. 
(example at right 
shows how WS-CRDS 
addresses this)


